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Vorticity is deposited baroclinically by shock waves on density inhomogeneities. In 
two dimensions, the circulation deposited on a planar interface may be derived 
analytically using shock polar analysis provided the shock refraction is regular . We 
present analytical expressions for r’, the circulation deposited per unit length of the 
unshocked planar interface, within and beyond the regular refraction regime. To 
lowest order, r’ scales as 

r’ cc (1  - y-”(sina)(l+ M-’ + ~M-’) (M - l ) ( y f / y  + 11, 

where M is the Mach number of the incident shock, q is the density ratio of the gases 
across the interface, a is the angle between the shock and the interface and y is the 
ratio of specific heats for both gases. For a < 30”. the error in this approximation 
is less than 10% for 1.0 < M < 1.32 for all y > 1, and 5.8 < q < 32.6 for all 
M .  We validate our results by quantification of direct numerical simulations of the 
compressible Euler equations with a second-order Godunov code. 

We generalize the results for total circulation on non-planar (sinusoidal and circular) 
interfaces. For the circular bubble case, we introduce a ‘near-normality’ ansatz and 
obtain a model for total circulation on the bubble surface that agrees well with results 
of direct numerical simulations. A comparison with other models in the literature is 
presented. 

1. Introduction 
The interactions of shock waves with density inhomogeneities are of fundamental 

importance in compressible turbulence, and occur in a myriad of situations, both 
in nature and in practical applications. This environment has been referred to as 
the shock-induced Rayleigh-Taylor instability or the Richtmyer-Meshkov instability 
enoironment after Richtmyer (1960) who did the linear stability analysis of long- 
wavelength perturbations on a vertical interface (figure l b )  subject to an impulsive 
acceleration, and Meshkov (1969) who provided the experimental confirmation. In 
recent years, there has been considerable interest in shock-induced mixing for scram- 
jet combustors (Yang, Kubota & Zukoski 1993), and inertial confinement fusion 
(Lindl, McCrory & Campbell 1992). Aspects of the light curve from supernova 
SN1987A may be explained by phenomena associated with the Richtmyer-Meshkov 
instability (Arnett et al. 1989). 

Circulation deposition is the dominant fluid dynamical process in early-time 
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Richtmyer- Meshkov environments and it is imperative to quantify this process for 
model building and scaling. In this paper, we use shock polar analysis to obtain 
analytical expressions and scaling laws for circulation on density-stratified interfaces 
accelerated by planar shocks in two-dimensional planar geometries. We extend the 
analysis to predict the circulation on non-planar (sinusoidal and circular bubble) 
interfaces. Effects of changes in the ratio of specific heats across the interface are also 
examined. 

The physical picture may be characterized by a shock wave propagating in a 
rectangular shock tube, through a gas of density po and an interface separating a 
gas of density p h .  Figure 1 shows a schematic of three possible physical situations: a 
planar interface inclined at an angle, LX; a sinusoidal interface with amplitude, A, and 
wavelength, 1 ; or a bubble of radius normalized by the shock-tube width, ro/LT. 
The parameter space is three-dimensional : the strength of the shock characterized by 
the Mach number, M ;  the density ratio, = p b / p o ;  and the geometry of the density 
interface characterized by 01 or A/J. or ro/LT. Two generic classes of interactions exist: 
one in which the shock crosses into a fluid with a higher sound speed, (the ‘slow/fast’ 
or s/f interaction), and a second where the shock passes into a region with a lower 
sound speed, (‘fast/slow’ or f/s). In this paper, we focus on f/s interactions where 
the interface is initially vorticity free. For simplicity, we have omitted the effects of 
viscosity and heat transfer, as they play a minor role in relevant physical experiments. 

The vorticity equation for a two-dimensional inviscid flow is given by 

-- D(”/p) - (Vp x V p ) / p 3 .  
Dt 

As the shock strikes the density inhomogeneity it deposits a layer of vorticity due to 
baroclinic effects, i.e. a misalignment of density and pressure gradients. The physical 
phenomena may be classified into two distinct phases: the vorticity deposition phase 
which occurs when the incident shock is in contact with the interface; and the vorticity 
evolution phase coupled with secondary baroclinic effects which drive the flow after 
the primary incident shock leaves the interface. In this paper, we emphasize the 
vorticity deposition phase. 

Early experimental work by Jahn (1956) examined the nature of shock wave 
refraction at gaseous interfaces. In this paper, we have made extensive use of 
shock polar analysis equations as presented by Henderson (1966). Abd-El-Fattah & 
Henderson (1978) described the transition of regular refraction to irregular refractions 
in terms of shock polar analysis at fast-slow interfaces. Henderson (1989) also 
discussed the refraction of shock waves in media with arbitrary equations of state 
and developed a rigorous definition of wave impedance which determines the nature 
of reflected and transmitted shocks, their intensities, and the fraction of energy and 
power that are reflected and transmitted. He showed that definitions of the interface 
in terms of density ratio and terms such as slow-fast or fast-slow may be misleading. 
Note that in this paper, the designation of interfaces in terms of density ratio was 
found to be adequate for the parameters chosen. A detailed account of shock wave 
refraction patterns at slow-fast interfaces, based on numerical studies, is given by 
Henderson, Colella & Puckett (1991). Further theoretical work on shock-contact 
interactions was done by Grove (1989). 

Sturtevant (1985) experimentally investigated the s/f and f/s interaction of shocks 
with planar discontinuities, i.e. large-amplitude periodic sawtooth wave Richtmyer- 
Meshkov instability. The formation of a large stratified wall vortex was observed 
first in his experiments. The problem of shock-accelerated bubbles was addressed by 
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FIGURE 1. Schematic of physical domain and parameters for shock-accelerated density-stratified 
interfaces. (a) Planar interface; (b) sinusoidal interface; and ( c )  circular interface. 

Rudinger & Sommers (1960) to investigate the motion of bubbles of different densities 
in accelerated gas flows. Haas & Sturtevant (1987) investigated experimentally the 
shock-cylinder, shock-sphere interactions for both the f/s and the s/f cases to 
examine the nature of shock refraction and diffraction. Winkler et al. (1987) did 
a parameter space survey of shock-sphere interactions using an axisymmetric PPM 
code and observed several interesting effects, notably the formation of a supersonic 
vortex in f/s interactions. A qualitative investigation of shock-planar interactions 
with vortex dominant effects at late time was presented by Hawley & Zabusky (1989). 
Picone & Boris (1988) presented results from direct numerical simulations (DNS) 
using the FCT scheme and developed an ad hoc model for the strength of the vortex 
in two-dimensional shock-bubble interactions. 

The first quantitative investigation of vorticity generation in shock-planar interface 
interactions was presented by Yang et a]. (1992). They obtained good comparison of 
their DNS results with the experimental shadowgraphs of Sturtevant (1985). Vorticity 
generation and late-time evolution and quantification of coherent vortical structures 
in shock-planar interface interactions ( M  < 4.0) were also investigated by Samtaney 
(1993) and Samtaney & Zabusky (1992a). They observed the roll-up of the initial 
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vortex layer into coherent vortices followed by late-time merger of some of these 
vortices, filamentation and formation of stratified dipolar vortices. The present work 
is an extension of the work on analytical quantification of circulation on shock 
accelerated f/s interfaces presented in Samtaney & Zabusky (1993). We also include 
some work on reduced models for circulation in shock-bubble interactions developed 
by Samtaney & Zabusky (1992b). 

In $2 we present the equations of shock polar analysis and derive an exact ex- 
pression and an asymptotic series for circulation on a planar f/s gas interface. In 
$3, we compare the circulation on the interface from numerical experiments with 
the analytical results. In 94, formulae with proper scaling behaviour are derived for 
the circulation on a planar interface. In $5, we derive the vorticity deposition by 
a shock on non-planar interfaces and present a model for the total circulation in 
two-dimensional shock-bubble interactions. 

2. Circulation at a planar fast-slow gas interface 
2.1. Shock polar analysis equations 

A shock polar is the locus of final states that can be connected to a given initial 
state by a stationary oblique shock. For a planar interface the angle, SI, between the 
incident shock and the interface is constant. Figure 2 shows a schematic of a shock at 
Mach number,M, refracting at a fast-slow planar interface (density ratio, r ] )  inclined 
at an angle, CI, to the vertical. The refraction is regular, i.e. all the shocks meet at a 
single node if a is smaller than a certain critical angle, acr. In shock polar analysis 
one assumes a frame of reference which is stationary with respect to the node where 
all the shocks meet. Furthermore, we assume that both gases are perfect and inviscid. 
In figure 2, mrn is the interface; i, r ,  t are the incident, reflected and transmitted waves, 
respectively; sl and s2 are the streamlines in the incident and transmitted media; 60  

and f i l  are the deflections of s l  due to i and r ,  respectively and 6 h  is the deflection of 
s2 due to t. po and p h  are the initial pressures in the incident and transmitted gases 
respectively?; pl, p 2  and pt are respectively the pressures behind the incident, reflected 
and transmitted waves. The free-stream Mach number in front (behind) the incident, 
reflected and transmitted shocks are Mo(M,), M1(M2), and Mb(M,) respectively. yo  
and y b  are the ratios of specific heats in the incident and transmitted gases respectively. 

Following Henderson (1966), we write equations of the shock polars as 

where i = O,l ,b  for the incident, reflected and transmitted shock, and p: = 

(yj - l ) / ( y i  + 1) and yo = 7 1 .  Note that in the shock polar plane (d,p), where 6 
is the streamline deflection and p is the pressure ratio across the shock, the reflected 
polar is plotted with a shift from the origin of (60(pI),p1).  From the conservation 
laws we obtain 

(2.2) 
P1 
PO 
- =1+(1+&)(M2-1) ,  

1- The gas in which the incident shock is initialized is loosely defined as the ‘incident’ gas. The 
gas on the other side of the interface is loosely defined as the ‘transmitted’ gas. 
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where 

1 

FIGURE 2. Schematic of regular refraction with three shocks at a fast-slow interface. 

Mo = M /  sin cx. (2.5) 
Since the velocity of the node is the same in both media, we have 

To solve for the pressure p 2 ,  the following compatibility equations hold : 

& ( P 2 )  = dO(P1) - J b ( P t ) ,  

Pt - - - _ _ .  

(2.7) 

(2.8) 
P2 P2P1 

Pb P O  P1 P O  

-- - 

Equation (2.8) may be written as a twelfth-order polynomial in p2 (Henderson 
1989). This polynomial may have more than one real root or no real roots. We 
concern ourselves with the physical root which is the smallest real root. We implicitly 
assume that no downstream pressure disturbances are imposed which will modify the 
solution. 

If ct is smaller than acr all the three waves are shocks and meet at a single node 
(called RRR). For very weak shock waves, as c1 is increased, the reflected wave 
becomes a Mach line and then a centred rarefaction fan (called RRE). As ct is 
increased further the reflected wave is not a centred expansion fan and the refraction 
becomes anomalous. For stronger shocks the irregular refraction (called MRR) is 
typically characterized by the appearance of a Mach stem at the interface. For f/s 
interactions, transition from regular to irregular refractions occurs at three possible 
points: min(M1,Mz) = 1.0, Mt > 1 and the mechanical equilibrium point. The latter 
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FIGURE 3. Critical angle, xcr,  for transition from regular to irregular refraction as a function of M .  
The dotted line is ci,, = a,,, for M -+ 03. 

condition occurs when the intersection of the reflected and transmitted shock polars 
coincides with an intersection between the incident and transmitted shock polars. It is 
generally believed, based on experimental evidence, that the transition to irregularity 
occurs at the smallest angle, CI, for which one of the above conditions holds. Note 
that for MRR cases where acr occurs at M2 = 1, the slip line associated with the 
Mach stem is too weak to be observed. The domain of irregular refraction is quite 
complex and a detailed discussion of these cases is beyond the scope of this paper. 

Using the above analytical criteria, we plot acr (figure 3 )  as a function of M 
for four physical interfaces: Air-R22 (q  = 3.0,yo = 1.4,)'b = 1.172), Air-SF6 (q  = 
5.04,yo = 1.4,yb = 1.0935), He-CO2 ( q  = 11.0,yo = 1.667,yb = 1.297), and He-Xe 
( q  = 32.7,yo = 1.667,yb = 1.667). We observe that there is a certain critical Mach 
number beyond which the refraction proceeds from RRR to MRR instead of RRR 
to RRE. Below this Mach number, acr occurs at MI = 1 which is independent of 
q. Note that for smaller density ratios (as in the Air-R22, q = 3 case) acr is not 
necessarily monotonic with increase in M .  This non-monotonic behaviour is even 
more severe for q w 1 (not shown). 

2.2. Normalizations 
For simplicity, we assume P b  = PO = po = 1 and p b  = q initially . Thus, the sound 
speed is yi in the incident gas. In the sections which follow we will normalize the 
circulation on the interface by a lengthscale which will be indicated. All the results 
will thus have units of circulation per unit length, i.e. units of velocity. In order to 
convert to physical units, our normalized circulation must be multiplied by the ratio 
of the physical sound speed to yi 

1 

I 

2.3. Exact circulution 
Integrating the velocity along a contour of length ds' parallel to the shocked interface 
and infinitely thin perpendicular to the interface (figure 2), we obtain the circulation 
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(vorticity deposition) per unit length of the shocked interface as 

where 2;, and v2 are the velocities tangential to the shocked interface in the transmitted 
gas and the twice-shocked incident gas, respectively. We renormalize the circulation 
with respect to the original unshocked interface by multiplying (2.9) by the geometric 
factor ds'/ds = [cos a/  cos(a - &)] which accounts for the instantaneous change in 
length of the interface due to the shock, 

(2.10) 

After some algebra (see the Appendix), the expression for r' reduces to 

Note that sina in (2.11) has thc same sign as V p  x Vp. 
In the above equation, y f represents physically the ratio of sound speed behind and 

ahead of a shock. Equation (2.11) may only be used for RRR at a planar interface 
and we refer to it as the 'exact' shock polar result for r'. Typically, for a slow-fast 
interface the shock refraction is of the RRE type for small M (Henderson et al. 1991). 
For RRE one may derive a corresponding equation for circulation by replacing the 
shock jump conditions across the reflected wave with the Prandtl-Meyer expansion 
conditions. 

2.4. Approximate circulation at a jast-slow gas interface 
Upon transition to irregularity the shock polar equations do not yield any physical 
root. We expand r' in (2.11) as a series in sina about sina = 0. By symmetry 
arguments, the circulation on the interface is an odd function of sina. The pressure, 
p2, behind the transmitted or reflected shock is at most second order in sina. Thus 

(2.12) r' = r; sin a + r; sin3 K +  sin' a), 

where 

This reduces to 

(2.13) 

where the limiting pressure p20 = lim,*+o p2 behind the reflected shock is governed by 
the following nonlinear algebraic equation : 
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The derivation of r,l is given in the Appendix. The series expansion (2.12) is truncated 
after one or two terms and is referred to as the 'approximate' shock polar result for 
circulation. Thus the approximate result to first order is given by 

F'-r' - , sina, . (2.16) 

and to third order is given by 
3 = I'; sin a + I'; sin SI. (2.17) 

Unlike the exact result, r,' and I'; are real for 0 < a < n/2. As shown later, the 
third-order term contributes only negligibly to the total circulation. Furthermore, we 
believe that higher-order terms do not contribute significantly to the circulation. 

2.5. Ejfects of changes in ratio of specijic heats 
So far we havc assumed that the ratio of specific heats is different for each gas. In 
the past, some studies (Yang et al. 1992; Zabusky et al. 1992) have assumed the same 
ratio of specific heat in both gases. Although for large M this may not be a good 
assumption, we note that differences in y across the interface lead to a small change 
in the r'. Let Til be the circulation per unit original length of the interface if the 
correct specific heat ratios are used for the gases. Let r;, be the circulation per unit 
original length of the interface which is evaluated by changing yb. For the interfaces 
considered above we plot [I'] = rll - Ti2 normalized by Til for a = 45" interfaces. 
Note that for an He-Xe interface, for a = 45" there is no shock polar solution for 
M > 1.4 and so we have only plotted the M = 1.05 and M = 1.2 cases in figure 4. We 
observe in figure 4 that the changes in the ratio of specific heat across the interface 
does not significantly affect the initial vorticity deposition. Using this fact we will 
assume that ~b = yo for simplicity in deriving scaling laws in $4. 

2.6. Convective Mach number 
We define an average convective Mach number, as done for shear layers, as 

(2.18) 

The velocity difference t'z -vt is the same as the circulation per unit length I" and c2, ct 
are the sound speeds in the incident and transmitted gases after shock refraction. The 
convective Mach number, Mc, is a measure of compressibility. As given in (2.18), M ,  
can be calculated only for RRR. Note that the leading term in the series expansion 
of c2 and ct (which are even functions of sina) in sina is of O(sin2a). Therefore, to 
first order M,  may be written as 

(2.19) 

where cz0 = lim,,ocz and = lim,,oct are obtained from a one-dimensional 
interaction. 

In figure 5, MC is plotted as a function of M for four interfaces. The angle a is chosen 
as 90" so that for an interface inclined at smaller angles, M, has to be multiplied 
by sina. Note that for large M the change in M ,  is very small as A4 increases. For 
most cases, M ,  is small enough for the flow to be considered incompressible after the 
shock passage. 
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FIGURE 5. Convective Mach number, M,, us. incident shock Mach number, M ,  for four interfaces. 
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3. DNS and quantification 
3.1. Governing equations and physical parameters 

In this section, we compare the exact and approximate circulation (r', r;, Fj) with the 
circulation (f ') obtained from direct numerical simulations (DNS) of two-dimensional 
compressible Euler equations on a uniform grid with Ax = Ay = 1.0. The governing 
equations in conservative form are 

R. Samtaney and N. J. Zabusky 

u, + .F( U ) ,  + 9( U ) ,  = 0, (3.1) 

where U = {p ,  ~ , u , E , p c } ~ ,  F ( U )  = (pu,pu2 + p,puu,(E + p)u ,p (u jT  and %(U)  = 
{pu ,puu ,pu2  + p ,  ( E  + p ) ~ , p j v } ~ .  E is the total energy related to the pressure, p ,  by 
p = ( y  - 1)(E - &(u2 + u 2 ) ) ;  and [ is the interface tracking function. We have used the 
conservative level-set formulation (Mulder, Osher & Sethian 1992) in which a function 
((x, t )  is defined everywhere in the domain. Then a particular value of ((x, t )  defines 
the interface. In our case we initialize ((x,O) = +1(-1) in the incident (transmitted) 
gas. Thus, the level set ( ( x , t )  = 0 defines the interface at all times. The last PDE 
in the system of equations (3.1) governs ((x, t )  and is coupled to the other equations 
through the variable y(x, t ) .  We observe that expressing the level-set function in 
conservative form leads to an additional equation in the system of conservation laws 
and this system is not strictly hyperbolic. 

The boundary conditions are reflecting in the y-direction and inflow/outflow in 
the x-direction. We use four physical interfaces which correspond to a large span 
of density ratios: Air-R22 ( q  = 3 . 0 , ~ ~  = 1 .4 ,yb  = 1.172), Air-SF6 (q  = 5.04,yo = 
1.4,yb = 1.0935), He-C02 ( q  = l l . O , y o  = 1 . 6 6 7 , ~ ~  = 1.297), and He-Xe (q = 
32.7,yo = 1.667,yb = 1.667). The interfaces were planar and inclined at different 
angles to the vertical (a  = 15",30",45",60",75'). The incident shock strengths were: 
M = 1.05,1.5,4.0. 

For each of these runs we initialized the interface at about x = 120Ax and initialized 
the shock by about X O  = lOAx to the left of the density interface which is spread over 
2Ax to 3Ax. The width of the shock tube was fixed at L T  = 80Ay in all simulations 
described in this section. The domain size in the x-direction was increased as the 
angle, a between the shock and the interface increased. 

3.2. Numerical method 
Our numerical method, a generalization of Godunov's method, is second-order ac- 
curate in space and time and includes interface tracking. The method is based on 
Chern's method (I.-L. Chern, private communication 1991) and is similar to the Eu- 
lerian MUSCL (Colella 1985) scheme which is suitable for flows involving nonlinear 
wave interactions. We make the following assumptions: the flow is inviscid, the gases 
are perfect and there is no chemical reaction between the gases which are further 
assumed to be in thermal equilibrium. 

The solution at each time step is interpolated to give a 'piecewise linear' distribution 
in each grid zone. Van Leer's monotonicity constraints (Van Leer 1977) are used 
to mitigate short-wavelength numerical oscillations. The linearized characteristic 
equations are solved to get the solution at an intermediate time step. The flux terms 
are then obtained at each cell boundary by solving the full nonlinear one-dimensional 
Riemann problem (Smoller 1982). In our implementation, we use [(x, t )  to determine 
the volume fraction of the gases in each cell where Ic(x,t)l < 1. We use alternating 
sweeps in the x- and y-directions, which formally yields second-order accuracy (Strang 
1968). 
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( L T , A y )  = (80Ay, 1.0). The incident shock Mach number is M = 1.5. Air-R22 interface. 

The details of the numerical method are given in Samtaney (1993). Good agreement 
with the shock-tube experiments of Sturtevant (1985) was observed by Samtaney 
(1993) using different ratios of specific heats and tracking the interface by the level- 
set method. Note that this numerical method is the same as used by Yang et aE. 
(1992) though they did not track the interface and assumed the same ratio of specific 
heats for both gases. A convergence study of the numerical method was presented 
by Yang et al. (1992). Convergence tests for the numerical method with interface 
tracking are presented in Samtaney (1993). Therefore, only a brief convergence study 
is presented below. 

3.3. Visionzetrics and results 
We now quantify the circulation using DNS and show convergence to the exact 
circulation result where it exists and to the approximate formulae. At any instant the 
total vorticity on the interface is calculated as, 

P (t) = C ~ ( i ,  j ,  t)AxAY, 
D 

where D = { ( i , j , t )  such that l[(i,j,t) < ll}, and 

In a convergence study, we use two cases, (LT,AY) = (8OAy, l.O), and ( L T ,  Ay) 7 
(160Ay, 0.5). For these two resolutions, we plot the total interfacial circulation, r ,  
as a function of time, t, = t tan(a)/ tan(75") for M = 1.5 shock interaction at an 
Air-R22 interface inclined at a = 15",30",45",60",75" (see figure 6). We observe very 
good agreement for total interfacial circulation at the two resolutions. All the other 
results presented in this section use (LT ,  Ay) = (8OAy, 1.0). 

We ran the code until the shock traversed the complete interface, i.e. until t, = 
(LT tan cx + XO)/V'~ where V' is the speed of the incident shock. We then calculated 
the total interfacial circulation on the interface at this time. We divide f by 
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E ( =  LT/cosa)) to get the numerical value of the circulation per unit length of the 
original interface (?I). In figures 8, 9x and 10 we show I", the exact result (2.11); 
F;, the approximate circulation; and r', the numerical result normalized by f[. To 
facilitate the calculation of all the quantities, r[ is plotted as a function of M for the 
four interfaces (figure 7). In figures 8, 9, and 10 the exact result (2.11) terminates at 
acr while the approximate results can be extended to a = n/2. For most cases, r', 
f , l ,  and f"; agree very well with each other and with the numerical result (PI) up to 
moderate values of a. Also the agreement is better for larger Mach numbers and 
smaller density ratios. For weak shocks, fi differs considerably from r'. However, 
the third-order correction makes the agreement quite good. 

We now discuss the discrepancies between the numerical result (f.') and the anayt- 
ical results (r', r{ and Fi) at large a and large q. These discrepancies arise from 
the: (i) comparison of time varying processes (both physical and numerical) with 
a stationary result; (ii) regular and irregular reflection of the transmitted shock at 
the lower boundary; (iii) proximity of the shock to the diagnosed contact surface 
domain; (iv) comparison of the process of irregular refraction at the interface with 
an asymptotic series. For example, in figure 11 we show greyscale images, using 
DAVID (Bitz & Zabusky, 1990), of sinh-l(o) for an Air-SF6 interface shocked by 
M = 1.05(a), 1.5(b),4.0(c) shocks at t ,  = (LT tana + Xo)/Vs.  The images from left 
to right are for a = 15",30",45",60",75". (The arcsinh transformation enhances low- 
amplitude vorticity seen clearly on the reflected and transmitted shocks.) For large 
a the vortex layer rolls up near the lower wall to form a coherent vortex which has 
weak baroclinicity associated with it. The lower wall vortex binds with its image and 
translates in the upstream direction. For M = 1.05 the vortex layer is straight for 
a < 60". At a = 60",75" the transmitted shock reflects off the lower boundary and 
interacts with the vortex layer. For a = 75" the refraction is irregular and secondary 
multiple refractions occur near the lower boundary; the vortex layer is no longer 
straight. For A4 = 1.5, there is a Mach stem where the transmitted shock meets 
the lower boundary due to the interaction of the transmitted shock and associated 
opposite-signed vorticity layer (shown in black). With respect to item (iv) above, 
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FIGURE 8. Circulation per unit original length, r' for Mach 1.05 shock interactions wit! (a)  Air-R22 
interface; ( b )  Air-SFn interface; (c) He-C02 interface; (d )  He-Xe interface. 0, l ' ' / F ;  (circulation 
per unit original length of the interface normalized by the first-order term, r;); 0, ri/r,' (circulation 
up to third order in sina series normalized by Fi); A, x,= f'/pi (circulation in DNS normalized 
by Ti). 

although the refraction is MRR at tz = 60" the Mach stem near the contact surface 
associated with this irregularity is poorly resolved and the slip line is too weak to be 
observed. The refraction at a = 75" is also irregular and the lower part of the vortex 
layer has evolved substantially; secondary baroclinic processes occur close to the 
lower boundary and we observe the generation of opposite-signed vorticity. Similar 
and stronger processes occur for A4 = 4.0. The transmitted shock is very close to 
the interface and the opposite-signed vorticity is also very close to the interface. This 
affects the numerical quantification process. We also recognize that implicit numerical 
viscosity increases the width of the vortex layer and affects all these processes. 

To overcome the difficulty ofAthe time-varying processes, we also use a temporal 
sampling technique to quantify r' as 

where A1 = At(Vs/ sina) and p(ti) is the total interfacial circulation in the domain at 
time ti. We calculate the average of N samples (for an Air-R22 interface, M = 1.5, 
and a = 15", 30", 45", 60", 75", N = 10,30,60,100 and 200 respectively). The results of 
this quantification are labelled x in figures 8, 9, and 10 and one observes a decrease 
in the discrepancy, especially for large-vj cases. 

Although the circulation per unit length of the shocked interface, dF/ds' (2.9), is 
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FIGURE 10. As figure 9 but for a Mach 4.0 shock. 
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FIGURE 11. Vorticity images for an Air-SFs interface. (a)  kf = 10.5; (b)  M = 1.5, ( c )  kf = 4.0. 
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FIGURE 12. Ratio of third-order term, r;, to the first-order term, r;, in the series expansion of r' 
in sincr, as a function of M .  

a monotonic function of a, the corrected circulation, r' (2.10), is not monotonic for 
weak shocks. The reason is that coscl in the length correction term becomes small 
for large a, especially near the transition from RRR to RRE. 

In figure 12 we plot the ratio of r; to ri for various cases. In most cases the ratio 
is a very small number. The third-order term contributes more significantly for small 
Mach numbers where the refraction is approaching RRE. 

To verify that the approximate expression is valid for large angles we need interfaces 
where we encounter large angles but where the time of passage of the shock is small. 
This we defer until the section on non-planar interfaces. 

4. Scaling laws 
Although we have the exact expression for circulation on a planar fast-slow 

gas interface, this expression is coupled with the equations of shock polar analysis 
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through the evaluation of the pressure behind the reflected and transmitted shocks. 
It is desirable to derive certain scaling laws which may prove useful in a certain 
region of our three-dimensional parameter domain. In this section we present scaling 
laws for r' in terms of M ,  q, c1 and y .  We assume for simplicity that -yo = y b ,  for 
which q f  is the ratio of sound speed across the interface. The scaling laws are 
based on the asymptotic series of r' in the regular refraction regime. We examine 
the behaviour of the leading term in the asymptotic series and if the leading term 
approximates the exact circulation with a 'small error', we use the expansion variable 
as a scaling factor. 

It was demonstrated in $2 that the leading term in the series expansion of I" in 
sin a approximates r' accurately for several cases. Thus an appropriate scaling factor 
f o r  the inclination of the interface is sina. 

4.1. Circulation for very strong incident shocks 

Consider the case of an infinitely strong shock M --+ 00. The subscript 00 is used to 
indicate the limit as M + 00. The equations of shock polars reduce to 

sin 2a 
y + 1 -2sin'a' 

tan&, = 

61coba) = 60, - &m(Pm)- (4.5) 
The above equations may be solved for pm = p2/M2. For M --+ 00, we observe that 
pm and 8ba approach asymptotic values. T ' / M  also asymptotes to a lower bound 
given by 

(4.6) 
2 1 + P2 + Pm sin2 .) $1 cos c1 

-(I - Y + l l / p 2  + (1  + p2)/pm cos(a - 6bm) '  

The above result implies that for very strong incident shocks, r' scales linearly in M . 
Another important observation is that a,, = a,,., has a finite lower bound. We have 

assumed implicitly that the transition criterion from RRR to MRR does not change 
for M + 03. In figure 3 acrm is plotted as the dotted line for four interfaces. 

The turning angle, 8 6 ,  which is a measure of the instantaneous compression of the 
interface by the shock, has an upper bound given by 8bw. For instance, an Air-R22 
interface inclined at a = 45" has dbm = 27.2". This is a restatement of the fact 
from normal shock theory that an infinitely strong shock has an upper limit on the 
compression it causes as it moves through a gas. 
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4.2. Circulation for weak shocks 

We now express r’ as a series expansion for weak shocks ( M  + 1). The expansion 
variable is a function of Mach number such that it asymptotes to M for large M and 
leads to zero circulation for M = 1. Thus let [ ( M )  be the expansion variable. r’ is 
expressed as 

61 

One then expresses p2 as a series in 5 using the shock polars. One has mathematical 
freedom in choosing the expansion variable, t ( M ) .  We investigated several [ ( M )  
having the form 

where P ( M ) ,  Q(A4) are polynomials of degree n and y1 - 1 respectively. This gives a 
linear behaviour in M for large M which was established in an earlier section. The 
form finally chosen gives the ‘smallest error’ in the parameter space explored and is 
given by 

(4.9) 
After some algebra, we get 

[ ( M )  = (1 + M-’ + 2 M 3 M  - 1). 

( 1  + M-I + 2M-’)(M - 1) + O(S.*), (4.10) 
y~ 17-1 sin2a r f=  ____ I 1  y + 1  ,f c o s a ’ + ~ f c O S a  

where sina‘ = sinx/yf. Note that this result is not monotonic in a. There is a certain 
maximum which occurs at ax, a root of the polynomial 

(17 + 1) cos8 a + (y2 - 4) cos6 a+ (-417 + 6) c0s4 x + 4(q - 1) cos2 a - 17 + 1 = 0. (4.11) 

Note that a, is not related to the transition to irregularity. In figure 13 y e  plot 
r’, (2.11), the leading term in (4.10), and results from DNS quantification (r’), as a 
function of M for three planar interfaces (q  = 3.0,5.04,11.0) inclined at a = 45”. We 
observe that the leading term in the above series expansion approximates the exact 
result for a large range in M .  The agreement is even better for smaller angles, which 
are not plotted. The dotted line in these plots shows the asymptotic value as indicated 
by the A4 + co result. Expressing the circulation as a series for weak shocks and 
small inclinations of the interface, we get 

I 1  
277 1 7 3 - 1  

y + l  r+ 
r f  = -__ sina( l+ M-’ + 2?K2)(M - 1) + O([*) + O(sin3 a). (4.12) 

4.3. Circulation for small density ratios 
In this section we examine the behaviour of small density jumps across the interface. 
We express the circulation as a series in q’ = 1 - 17-4. The expansion variable 
was chosen by examining the behaviour of circulation for weak shocks and small 
inclinations, (4.12). Thus the circulation is given by 

(4.13) 

Note that in the limiting case of a zero density gradient across the interface the 
3 FLM 269 
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M 

FIG~RE 13. Circulation per unit original length as a function of M .  The angle of the interface is 
CI = 45”. The density ratio is indicated in the figure. 0, r‘; 0,  leading term in series of r’ in 
t ( M )  = (1 +M-’ + 2 M P 2 ) ( M -  1); A, f’. The dotted line is the asymptotic limit of I” for M -+ 00. 

pressure behind the reflected wave is the same as the pressure behind the original 
incident shock. We express the pressure behind the reflected shock using the shock 
polar equations : 

(4.14) 

(4.15) 

- ] (4.16) 

(Y + 1)M2 

( y  + 1)M2/(M2 - 1) 

= - sin 260 

(y + 1) sin260 [ 
4i ( y  + 1)M2 - 2(M2 - 1) sin’ SI 2M2 COS’ a ’ 

where y’ is the derivative of y with respect to the first argument. In figure 14 we plot 
r’, the leading term in (4.13), and results from DNS quantification (k’), for three 
Mach numbers ( M  = 1.05,1.5,4.0) for an interface inclined at SI = 45”. Although 
the circulation was expressed as a series assuming that 1 - q-5 is small, we observe 
that the leading term captures most of the circulation for a large range in q. Note 
that for M = 4.0 the refraction is not regular for q > 5.52 and hence thc exact 
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14. Circulation per unit original length as a function of q. The angle of the interface is 
The Mach number of the incident shock is indicated in the figure. 0, r ' ;  0, leading term 
of ri  in 1 - q - i ;  A, F". 

circulation shown by the circles terminates. The authors acknowledge the fact that 
the expression for the leading term is analytically complicated and does not motivate 
physical insight. 

4.4. Proposed scaling laws 
The above analysis is summarized in the dominant terms for r' as 

(4.20) 
2yt  r: = --(I - q-k)  sina( l+ M-' + ~ M - ' ) ( M  - 1). 

Y+1 
Equation (4.20) shows that the circulation per unit original length, I", scales as 

(i) (1 + M-l + 2M-*)(M - 1) in Mach number. This leads to linear behaviour in 
M for large M ;  

(ii) (1 - q- i )  for the density ratio. Note that for large y circulation is essentially 
independent of the density ratio. For q -+ 00 the circulation should correspond to the 
slip velocity at a solid surface; 

(iii) (sina) for the inclination of the interface with the shock; 
(iv) yi/(y + 1) for the ratio of specific heats. 

Figure 15 shows the exact circulation, r', in the (M- ' ,q - i )  plane for y = 1.4. The 
extent of the plane encompasses very weak shocks (M-' -+ 1) and extremely strong 
ones (M-' + 0). The density ratio varies from the extremely small ( i f - ;  + 1) to 
the very large (q-4 -+ 0). The angle of the interface is a = 15",30",45",60". The 
normalized circulation is set to zero (white space indicated by IR) where the shock 
refraction is not RRR. At a = 60" there is a rcgion of RRE indicated by IR in the 
lower right part of the diagram. Where the scaling law holds exactly the normalized 
circulation should be exactly equal to one. We define, arbitrarily, the contour levels 
of 1.1 and 0.9 to be the boundaries where the scaling laws hold. These boundaries 
correspond to a 10% error (light grey space). Not surprisingly, the domain of 
applicability shrinks as I increases. For small a, there are regions where the scaling 

3-2 
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FIGIJKE 15. Images of circulation per unit unshocked length, r', normalized by r: in the ( M - ' , v - $ )  
plane. The angle of the interface is (a) z = 15"; (h)  rt = 30"; ( c )  CI = 45"; ( d )  CI = 60". The light 
(dark) grey areas show where r: is smaller (larger) than +lo% than r'. The white space shows 
regions where refraction is not RRR. 

laws are within the specified error bounds up to very large M at intermediate values 
of y ~ ;  and up to very large y~ at low to moderate values of M .  For instance, for 
a < 30°, the error is less than 10% for 1.0 < M < 1.32 for all q, and 5.8 < q < 32.6 
for all M .  Another observation concerns the transition from RRR to IR. Note that 
for x = 6O0,q-; = 0.8, as M increases we proceed from RRR to IR and then back to 
RRR. 

5. Circulation for non-planar interfaces 
Hitherto, we have only considered planar interfaces and derived scaling laws for 

those. In this section, we present analytical expressions for circulation on non-planar 
interfaces. Consider a non-planar fast-slow interface described by x = f ( y )  where 
f ( y )  and f - ' ( y )  are single valued. In $2, we derived an approximate expression for 
circulation (2.12) which is of the form 

- r; sin a + r; sin3 a, 
df3 -- 
ds 
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where r; and r; depend only upon M ,  q ,  yo and I/h.  Integrate equation (5.1) to get 
the total circulation magnitude on the interface as 

where AX (see figure 1) is the range of the interface in the x-direction and f1 = rjAX 
is the total circulation magnitude to first order. The vorticity distribution is given by 

As examples of non-planar interfaces we consider sinusoidal interfaces and cylindrical 
bubbles. 

5.1. Sinusoidal interface 
5.1.1. Circulation on sinusoidal interfaces 

The equation of the interface is x = xo + A cos ky .  See figure l (b)  for a schematic 
of the interface. Here k = 2n/A is the wavenumber. Using (5.2), F3 on one half- 
wavelength sinusoidal interface is given by 

1 (1 + k2A2)i + k A  
- =r;+r;-r;  r3 

2A 2kA(1+k2A2)f  log ( 1 + k 2 A 2 ) f  - k A  

Integrating (5.3) along the x-direction and retaining only the first-order term, we get 

G(x,  y)dx = O ( y )  = r ; A k  sin ky .  (5.5) L 
We conducted several numerical experiments with A = 16, 1 = 160 on a 400 x 80 

grid with Ax = A y  = 1.0. We simulate only half the wavelength and stop the 
calculation when the shock has traversed the interface completely. The largest angle 
between the shock and the interface occurs at (0, -A/4) and is given by tan LX,,, = Ak. 
For A l l  = O.l,amax = 32” and the refraction of the shock at the interface is regular 
at all times; while for A / i  = 0.5,am,, = 72”, for which the refraction is irregular. 

Implicit in (5.3) is the fact that the vorticity is distributed on a set of measure 
zero in the Lebesgue sense. However, in DNS we have a vortex layer. We observe 
good agreement between DNS results ( h ( y ) )  and the analytical result ( a ( y ) )  of the 
x-integrated vorticity for an Air-R22 interface (Al l  = 0.1) for several Mach numbers 
(figure 16). 

We also observe good agreement between the total circulation. F3, and P (DNS 
results) normalized by f l  = 2ATj (figure 17). Note that the magnitude of r; may 
be obtained from figure 7. The agreement worsens as A/A increases. As before, one 
source of discrepancy between the analytical and numerical results is that the time 
taken for the shock to traverse the interface is large for large A/3, ratios and the vortex 
layer evolves during this time. From our DNS we observe that, at later times, the 
vorticity on the interface coalesces to form a mushroom-shaped coherent structure. 
At this later time, the vorticity distribution is no longer governed by (5.3); however, 
the total circulation remains close to that predicted by (5.4). We are developing an 
analytical incompressible vortex paradigm for the growth rate of a single mode and 
will present it in a future publication. 

For the sake of completeness, we briefly mention an investigation of the slow-fast 
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FIGURE 16. Magnitude of vorticity distribution normalized by 2AT; as a function of y for a sinusoidal 
Air-R22 interface (A/,? = 0.1). The solid line is the analytical result O(yj. The symbols correspond 
to h(yj. The Mach numbers of the incident shock are: M = 1.05(0), I.2(Aj, 1.5(Vj,2.O(Oj. 

interaction. Typically, for a slow-fast interface the shock refraction is of the RRE 
type for small a (Henderson et al. 1991). The circulation per unit unshocked length, 
F,lf, may be expressed as a series in sinx as 

T:f = r& sin a + 0(sin3 a), (5.6) 

where rif is given by 

Thus, the total circulation to first order is 

f, = 2ATif. 

In figure 18 we compare the f s f / 2 A  with results from DNS for an Air-He sinusoidal 
interface with A = 16 and 3, = 160. The transition to irregularity takes place at 
smaller angles and thus the difference between the analytical result and DNS is larger 
than for the fast-slow cases. Obviously, higher-order terms are necessary in the above 
series expansion. 

5.2. Circular interfaces 
In figure 19 we show images of ( a )  vorticity and (h)  numerical shadowgraphs of DNS 
of an Air-R22 shock-bubble interaction for M = 1.5. Time increases from left to 
right in each row. The numerical experiments were done on a 400 x 80 grid with 
Ax = A y  = 1.0 and ro = 50. We divide the vorticity deposition into three phases: 
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FIGURE 17. Total circulation magnitude normalized by f;  = 2Ar; for a sinusoidal interface given by 
x = xo +Acosky. The solid (dotted) line is f3/(2Ar;) for A / 1 =  0.1 (A/; = 0.5). The interfaces are 
(a)  Air-R22; (b)  Air-SF6; (c) He-COZ; and (d )  He-Xe. 0 (U), PI(2AT;) for A/ i  = 0.1 (A/ i  = 0.5). 
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18. Total circulation normalized by 2A for an Air-He sinusoidal interface given by 
x = xo + Acosky. The solid line is fsf/2A and 0, fsf/(2A) for A / 1 =  0.1. 

M 
18. Total circulation normalized by 2A for an Air-He sinusoidal interface given by 
x = xo + Acosky. The solid line is fsf/2A and 0, fsf/(2A) for A / 1 =  0.1. 

Phase (i): During this phase the shock undergoes regular refraction at the bubble 
interface. The shock polar equations are valid in this phase. This phase ends when 
the shock polar equations break down at a certain critical angle (first left image in 
figure 19). 

Phase (ii): This phase lasts until the shock is at the top of the bubble, i.e. CI = n/2 
(second frame in figure 19). 

Phase (iii): As the shock moves over the top of the bubble, it curves back to 
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FIGURE 19. (a)  Vorticity and (b)  numerical shadowgraphs for an Air-R22 shock bubble interaction. 
M = 1.5. 

meet the interface (third frame in figure 19). However, for weak incident shocks, 
weak compression waves touch the interface and continue into the bubble where they 
coalesce to form a shock. Phase (iii) ends when the primary shock reflects off the 
lower boundary and deposits opposite-signed vorticity on the interface (fourth frame 
in figure 19). 

5.2.1. Circulation at the end of phase ( i i )  
We use (5.2) to get the circulation on the ‘uside’ of the bubble (see figure lc) which 

satisfies the conditions that the equation for the interface be a single-valued function 
of y. The circulation magnitude on the ‘uside’ of the bubble, to first and third order, 
is 

T I  = r;rg, (5.9) 

T 3  = r{ro + irirg. (5.10) 

In figure 20 we plot f 3 / f 1  as a function of Mach number, M ,  for the following 
interfaces: Air-R22, Air-SF6 He-C02 and He-Xe. The symbols in the figure indicate 
quantification from DNS (f /fl). This example illustrates an interface where we 
have rapid traversal of the interface and where the angle between the shock and the 
interface varies continuously from 0 to 71/2. The agreement between the analysis and 
DNS is very good, especially for lower density ratios. The third-order contribution to 
the total circulation is small for most cases. 

5.2.2. Total circulation at the end of phase (i i i)  
The above analytical result gives us the total circulation on the bubble when the 

shock is on top of the bubble. As the shock diffracts over the bubble surface, the 
phenomenon gets complicated. Eventually, the vortex layer on the bubble surface 
rolls up to form a coherent vortex. It is important to quantify the strength of this 
vortex structure. Figure 21 shows the space-time diagram of the baroclinic source 
term, i.e. J(Vp x Vp)/p2dy, for an M = 1.5 shock interacting with an Air-R22 circular 
interface. In figure 21, we clearly see that the primary shock curves backwards to 
contact the interface; al t NN 80 we see another dominant black streak to the left of 
the main black streak; this is caused by the refraction of the transmitted shock with 
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the interface. At t = 100 we see the appearance of a white streak which indicates the 
reflection of the shock and deposition of opposite-signed vorticity on the interface. 
For larger density ratio cases such as HeeC02 or He-Xe interfaces, the transmitted 
shock reaches the ‘dside’ of the bubble (see figure l c )  fairly late and deposits vorticity 
of the same sign as in the primary interaction. Let f’,,, refer to the circulation on 
the interface at the end of phase (iii). We adopt the so-called ‘visiometric’ approach 
(Silver & Zabusky, 1992) to model f,,,. The complicated phenomenon at the back 
side of the bubble are all lumped together in a ‘near-normality’ hypothesis which 
is: the primary density and the pressure gradients are nearly perpendicular to each 
other. The basis of this hypothesis is the visual inspection of numerous numerical 
shadowgraphs. 

We also investigated the validity of the ‘near-normality’ hypothesis using geornet- 
rical shock dynamics (Henshaw, Smyth & Schwendeman 1986; Schwendeman 1988) 
and found the angle between the shock and the interface to be n/2  71/12 after 
phase (ii) for the parameter space discussed here. Since the sine of the angle is used 
in the model, the error is small. Note that in geometrical shock dynamics the angle 
between the shock and the interface after phase (ii) is exactly n/2 if q + co. This 
‘near-normality’ assumption is violated if q w 1. Retaining terms up the third order, 
we get 

Fiji = (I  + $n)r;ro + (3 + in)riro. 
Retaining only the first-order term in (5.2) we get 

(5.11) 

Fiji = (1 + in)r j ro .  (5.12) 

We abbreviate our model as SZ1. 
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FIGURE 21. Space-time diagram of y-integrated baroclinic source term for an A i ~ R 2 2  
shock-bubble interaction for M = 1.5. 
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FIGURE 22. Circulation normalized by f',,, as a function of normalized time ( t M ) .  (a) Air-R22; 
( b )  Air-SFb; (c) He--C02; (d) He-Xe. The dotted line shows the analytical result. In each case 
M = 1.05,1.2,1.5,2.0. 
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In figure 22 we plot the circulation from DNS normalized by fiii, (5.12). The 
time axis is normalized by M .  We observe that the curves for different M collapse 
indicating that the scaling chosen is very good. For very large density ratio cases 
after phase (ii) the different curves seem to depart from each other. The end of phase 
(ii) is at t = 50.28 for Air-R22 and Air-SF6 interfaces, and at t = 46.08 for He-CO2 
and He-Xe interfaces. The end of phase (iii) is apparent in most cases as the first 
kink. For the Air-R22 and Air-SF6 interfaces, the difference between fiii and DNS 
results at the end of phase (iii) seem larger because the transmitted shock is also 
contributing to the circulation. In our numerical experiments, we noticed that the 
circulation for the larger density ratios increases with time due to secondary effects 
which are not explained by our model. 

5.3. Comparison of models 

5.3.1. Picone-Boris model 

be written in our notation as 
The model proposed by Picone & Boris (1983) and Picone et al. (1988) (PB) may 

(5.13) 

This model was derived for both the s/f and the f/s shock-bubble interactions. The 
weaknesses of this model are that it is not asymptotically motivated and assumes fore 
and aft symmetry (Ti i  = 0.5riii), and that the circulation is not bounded and diverges 
logarithmically as -+ a. 

5.3.2. Rudinger-Sommers model 

as 
Rudinger & Sommers (1960) proposed a model (RS) for the strength of the vortex 

4yi M 2 - l q - 1  
n i - y + l  M y + l r o -  

r... - - ~ -  (5.14) 

5.3.3. Scaling law model 
In $4 scaling laws were derived for circulation per unit unshocked length of the 

interface. Integrating (4.20) from 01 = 0 to CI = n/2 and using the near-normality 
hypothesis, leads to the simplest asymptotically motivated model for circulation 
(abbreviated SZ2) in f/s shock-bubble interactions : 

(5.15) 

5.3.4. Discussion 
None of the models discussed in this sub-section considered the change in ratio 

of specific heats across the interface although certain corrections were proposed by 
Picone-Boris and Rudinger-Sommers. For comparison with DNS we use the same 
ratio of specific heats, y = 1.4, in both gases and use q = 3.0,6.0,15.0 interfaces. The 
total circulation at the end of phase (iii) normalized by ro is plotted in figures 23(a-c) 
for all the models. Note that the Picone-Boris model (PB) agrees for smaller density 
ratios due to a fortuitous cancellation of errors, and overpredicts for larger y ~ .  The 
Rudinger-Sommers model (RS) underpredicts especially for larger Mach numbers. 
Both our models, SZ1 and SZ2, agree well with DNS results and with each other. 
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FIGURE 23. Comparison of DNS with models for circulation in shock-bubble interactions as a 
function of Mach number for (a) an 7 = 3 interface; (b)  an 7 = 6 interface; (cj an q = 15 interface. 
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Note that the SZ2 model gives the dependence on various quantities explicitly and is 
the simplest model. 

6. Conclusion and future work 
One of the primary objectives of this work was to quantify the baroclinic vorticity 

generation in Richtmyer-Meshkov environments. An analytical expression, based on 
shock polar analysis, was derived for circulation on f/s planar interfaces. This expres- 
sion was valid only for regular refraction (RRR) of shock waves. An approximate 
expression for circulation, based on truncated series expansions in sin a, was derived 
which can be used for irregular refractions of the shock. A comparison within RRR 
showed that the first-order term captures most of the circulation. It was also shown 
that the third-order term contributes negligibly for Mach numbers M 2 1.5. Both 
the first- and third-order terms were shown to be real for all cases. By a judicious 
selection of expansion variables, we determined the key result in our paper, namely 
the scaling laws for circulation on planar interfaces (see (4.20) and figure 15). 

We also demonstrated that circulation is a very weak function of changes in ratio 
of specific heats across the interface. The analytical expressions predict the initial 
vorticity deposition on the interface, and for large angles are not very useful since the 
flow field evolution has changed much of the vorticity distribution in the domain. 

An analytical expression for circulation on monotonic non-planar interfaces was 
developed. The analytical expression was confirmed by DNS of the full nonlinear 
equations for sinusoidal interfaces and the ‘uside’ of circular bubbles. A model 
was developed for the total circulation on circular bubbles by hypothesizing the 
near-normality of the shock with the bubble surface during diffraction. 

In the future, we will extend the baroclinic vorticty generation to three-dimensional 
interfaces. Also, we will model the growth rate of sinusoidally perturbed interfaces in 
two and three dimensions using vorticity distributions. Effects of compressibility will 
be quantified. 

This work was supported in part by the National Science Foundation, Grant No. 
DMS-8901900. R.S. was supported by a graduate assistantship from CAIP center, 
Rutgers University. We acknowledge the Cray-90 computer time provided by the 
Pittsburgh Supercomputing Center. 

Appendix. Derivations 

Let r,l be the circulation per unit shocked length of the interface. Then 
A.l. Derivation of r’ 

is given by 

r; = vt - v2, (A 1) 

~2 = M 2 ~ 2 ,  ~t = M ~ c , .  (A 2) 

and 

The Mach number behind the transmitted wave, Mt is given by 
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or 
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The sound speed behind the transmitted shock is given by 

where pt is the density behind the transmitted shock. Using the Rankine-Hugoniot 
jump conditions, express pb/p, as a function of p2/p0. This gives, 

The tangential velocity, vt is then 

The Mach number, M2, behind the reflected shock is given by 

The Mach number, MI, behind the incident shock is given by 

1 + ; (yo - 1)Mi 

1 + ; (yo - 1)M; 
= Y(Pl/PO,Clo). 

Therefore, 

M2= (-)'[ 2 1 1+-?}-1]'. yo-1 M2 z (A10) 

2 sin ct Yo  - 1 W(P2/PI, PO)W(Pl/PO? Po)  

The sound speed behind the reflected shock is given by 

where p2 is the density behind the reflected shock. Using the Rankine-Hugoniot jump 
conditions, express p1/p2 and p 0 / p 1  as functions of p2/p1 and p , / p o  respectively This 
gives, 

Thus the tangential velocity, v2 is given by 

u2 = A 4 2  c2 

We have normalized po = PO = 1. The difference vt - v2 multiplied by the geometric 
factor ds'/ds = [cos a/  cos(a - &,)I gives the circulation per unit unshocked length as 
given in (2.1 1). 
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A.2. Derivation of r; 
The circulation per unit length of the shocked interface is essentially a function of a 
and p 2 .  Let r,' be the circulation per unit shocked length of the interface. Expressing 
r,l as a double Taylor series we get 

To get the circulation per unit length of the original interface, we multiply I'i by 
the length correction factor given by 

Expressing the length correction factor as a series in sina and using the fact that it 
is an even function of sina, we get 

2 sin a + - 

The term (p2 - p20) is obtained by expressing (2.7) as a series in sina: 

Equating coefficients of the leading-order term gives (2.15). Equating the third-order 
coefficient gives the leading term in the sina series of p 2 .  Thus we get 

+0(sin4 a). (A 19) 
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Collecting terms of order sin3 a in r‘ gives 
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After some algebra we obtain the various terms contributing to the third-order term 
r; : 

where 

= -r$ (1 - 4 / 2 ) ,  
1 ar, a24 

P20/P1- 1 
X 

(i.4 + P2O/Pl)i 
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